Обеспечение электробезопасности
Общие сведения. Сила тока - основной фактор, обусловливающий степень поражения. Она пропорциональна напряжению (U) и обратно пропорциональна сопротивлению цепи (R), т. е.
I = U/R.
Средства и способы защиты человека от поражения электрическим током сводятся к следующему:
Напряжение до 42 В переменного и 110 В постоянного тока не вызывает поражающих факторов при относительно непродолжительном воздействии. Поэтому везде, где это возможно, кроме случаев, специально оговоренных в правилах, следует применять электроустановки с рабочим напряжением, не превышающим приведенных значений, без дополнительных средств защиты.
Однако при повышении мощности электроустановок с низким рабочим напряжением возрастают потребляемые ими токи, а следовательно, увеличиваются сечение проводников, габариты, потери энергии, и стоимость электроустановок. Самыми экономичными считаются электроустановки с напряжением 220...380 В. Такие напряжения опасны для жизни человека, что вызывает необходимость применения дополнительных защитных средств (защитные заземление и зануление).
Защитное заземление - преднамеренное соединение металлических нетоковедущих частей электроустановки с землей. Электрическое сопротивление такого соединения должно быть минимальным (не более 4 Ом для сетей с напряжением до 1000 В и не более 10 Ом для остальных) . При этом корпус электроустановки и обслуживающий ее персонал будут находиться под равными, близкими к нулю, потенциалами даже при пробое изоляции и замыкании фаз на корпус. Различают два типа заземлений: выносное и контурное.
Выносное заземление характеризуется тем, что его заземлитель (элемент заземляющего устройства, непосредственно контактирующий с землей) вынесен за пределы площадки, на которой установлено оборудование. Таким способом пользуются для заземления оборудования механических и сборочных цехов.
Контурное заземление состоит из нескольких соединенных заземлителей, размещенных по контуру площадки с защищаемым оборудованием. Такой тип заземления применяют в установках выше 1000 В.
Принципиальная схема защитного заземления:
а - в сети с изолированной нейтралью;
б - в сети с заземленной нейтралью;
1 - заземляемое оборудование;
2 - заземлитель защитного заземления;
3 - заземлитель рабочего заземления;
R3 - сопротивление защитного заземления;
RO - сопротивление рабочего заземления
Зануление - преднамеренное электрическое соединение с нулевым защитным проводником металлических нетоковедущих частей, которые могут оказаться под напряжением. Оно считается основным средством обеспечения электробезопасности в трехфазных сетях с заземленной нейтралью напряжением до 1000 В.
В сети с занулением следует различать нулевые защитный и рабочий проводники. Нулевым защитным проводником называется проводник, соединяющий зануляемые части потребителей (приемников) электрической энергии с заземленной нейтралью источника тока. Нулевой рабочий проводник используют для питания током электроприемников и тоже соединяют с заземленной нейтралью, но через предохранитель.
Использовать нулевой рабочий провод в качестве нулевого защитного нельзя!
т. к. при перегорании предохранителя все подсоединенные к нему корпуса могут оказаться под фазным напряжением.
Принципиальная схема зануления:
1 - корпус однофазного приемника тока;
2 - корпус трехфазного приемника тока;
3 - предохранители;
4 - заземлители;
Iк - ток однофазного короткого замыкания;
Ф - фазный провод;
Uф - фазное напряжение;
HР - нулевой рабочий проводник;
HЗ - нулевой защитный проводник;
КЗ - короткое замыкание
На рисунках приведены принципиальные схемы защитного заземления и защитного зануления электроприемников.
Следует отметить, что при случайном пробое изоляции и замыкании фазы на корпус, в цепи см. (рис. 2) развивается ток короткого замыкания Iк. При этом предохранитель перегорает, и установка отключается от сети.
К устройствам защитного отключения относятся приборы, обеспечивающие автоматическое отключение электроустановок при возникновении опасности поражения током. Они состоят из датчиков, преобразователей и исполнительных органов. Разработаны устройства, реагирующие на напряжение корпуса относительно земли и на перекос фаз в аварийных ситуациях.
Изолирующие средства защиты предназначены для изоляции человека от частей электроустановок, находящихся под напряжением. Различают основные и дополнительные изолирующие средства.
Основными изолирующими средствами для обслуживания электроустановок напряжением до 1000 В служат: изолирующие штанги, изолирующие и измерительные клещи, указатели напряжения, диэлектрические перчатки, слесарно-монтажный инструмент с изолирующими ручками, средства для ремонтных работ под напряжением (изолирующие лестницы, площадки и др.).
Дополнительными изолирующими средствами являются: диэлектрические галоши, коврики, изолирующие подставки.
Все изолирующие средства защиты, кроме штанг, предназначенных для наложения временных заземлений, ковриков и подставок, должны подвергаться электрическим испытаниям после изготовления и периодически в процессе эксплуатации.
I = U/R.
Средства и способы защиты человека от поражения электрическим током сводятся к следующему:
- уменьшению рабочего напряжения электроустановок;
- выравниванию потенциалов (заземление, зануление);
- электрическому разделению цепей высоких и низких напряжений;
- увеличению сопротивления изоляции токоведущих частей (рабочей, усиленной, дополнительной, двойной и т. п.);
- применению устройств защитного отключения и средств коллективной защиты (оградительных, блокировочных, сигнализирующих устройств, знаков безопасности и т. п.), а также изолирующих средств защиты.
Напряжение до 42 В переменного и 110 В постоянного тока не вызывает поражающих факторов при относительно непродолжительном воздействии. Поэтому везде, где это возможно, кроме случаев, специально оговоренных в правилах, следует применять электроустановки с рабочим напряжением, не превышающим приведенных значений, без дополнительных средств защиты.
Однако при повышении мощности электроустановок с низким рабочим напряжением возрастают потребляемые ими токи, а следовательно, увеличиваются сечение проводников, габариты, потери энергии, и стоимость электроустановок. Самыми экономичными считаются электроустановки с напряжением 220...380 В. Такие напряжения опасны для жизни человека, что вызывает необходимость применения дополнительных защитных средств (защитные заземление и зануление).
Защитное заземление - преднамеренное соединение металлических нетоковедущих частей электроустановки с землей. Электрическое сопротивление такого соединения должно быть минимальным (не более 4 Ом для сетей с напряжением до 1000 В и не более 10 Ом для остальных) . При этом корпус электроустановки и обслуживающий ее персонал будут находиться под равными, близкими к нулю, потенциалами даже при пробое изоляции и замыкании фаз на корпус. Различают два типа заземлений: выносное и контурное.
Выносное заземление характеризуется тем, что его заземлитель (элемент заземляющего устройства, непосредственно контактирующий с землей) вынесен за пределы площадки, на которой установлено оборудование. Таким способом пользуются для заземления оборудования механических и сборочных цехов.
Контурное заземление состоит из нескольких соединенных заземлителей, размещенных по контуру площадки с защищаемым оборудованием. Такой тип заземления применяют в установках выше 1000 В.
Принципиальная схема защитного заземления:
а - в сети с изолированной нейтралью;
б - в сети с заземленной нейтралью;
1 - заземляемое оборудование;
2 - заземлитель защитного заземления;
3 - заземлитель рабочего заземления;
R3 - сопротивление защитного заземления;
RO - сопротивление рабочего заземления
Зануление - преднамеренное электрическое соединение с нулевым защитным проводником металлических нетоковедущих частей, которые могут оказаться под напряжением. Оно считается основным средством обеспечения электробезопасности в трехфазных сетях с заземленной нейтралью напряжением до 1000 В.
В сети с занулением следует различать нулевые защитный и рабочий проводники. Нулевым защитным проводником называется проводник, соединяющий зануляемые части потребителей (приемников) электрической энергии с заземленной нейтралью источника тока. Нулевой рабочий проводник используют для питания током электроприемников и тоже соединяют с заземленной нейтралью, но через предохранитель.
Использовать нулевой рабочий провод в качестве нулевого защитного нельзя!
т. к. при перегорании предохранителя все подсоединенные к нему корпуса могут оказаться под фазным напряжением.
Принципиальная схема зануления:
1 - корпус однофазного приемника тока;
2 - корпус трехфазного приемника тока;
3 - предохранители;
4 - заземлители;
Iк - ток однофазного короткого замыкания;
Ф - фазный провод;
Uф - фазное напряжение;
HР - нулевой рабочий проводник;
HЗ - нулевой защитный проводник;
КЗ - короткое замыкание
На рисунках приведены принципиальные схемы защитного заземления и защитного зануления электроприемников.
Следует отметить, что при случайном пробое изоляции и замыкании фазы на корпус, в цепи см. (рис. 2) развивается ток короткого замыкания Iк. При этом предохранитель перегорает, и установка отключается от сети.
К устройствам защитного отключения относятся приборы, обеспечивающие автоматическое отключение электроустановок при возникновении опасности поражения током. Они состоят из датчиков, преобразователей и исполнительных органов. Разработаны устройства, реагирующие на напряжение корпуса относительно земли и на перекос фаз в аварийных ситуациях.
Изолирующие средства защиты предназначены для изоляции человека от частей электроустановок, находящихся под напряжением. Различают основные и дополнительные изолирующие средства.
Основными изолирующими средствами для обслуживания электроустановок напряжением до 1000 В служат: изолирующие штанги, изолирующие и измерительные клещи, указатели напряжения, диэлектрические перчатки, слесарно-монтажный инструмент с изолирующими ручками, средства для ремонтных работ под напряжением (изолирующие лестницы, площадки и др.).
Дополнительными изолирующими средствами являются: диэлектрические галоши, коврики, изолирующие подставки.
Все изолирующие средства защиты, кроме штанг, предназначенных для наложения временных заземлений, ковриков и подставок, должны подвергаться электрическим испытаниям после изготовления и периодически в процессе эксплуатации.
Категория: Электробезопасность /
Версия для печати